236719 Computational Geometry – Tutorial 1

Planar Graph Euler's Formula DCEL

Amani Shhadi

Based on slides by Yufei Zheng - 郑羽霏

Planar Graph

- Operation A planar graph is a graph that can be embedded in the plane
 - Can be drawn on a plane in such a way that its edges intersect only at their endpoints
 - In some pictures, a planar graph may have crossing edges

Planar Graph

Simple graph:

- undirected
- no graph loops
- no parallel edges

◎ Fáry's Theorem - every simple planar for a simple planar for

Tutte Embedding - the embedding of 3-vertex-connected planar graphs with good properties.

Euler's Formula

Notations

v – number of vertices*e* – number of edges*f* – number of faces

Euler's Formula (for finite, connected planar graph)

v - e + f = 2

v =e =f =

Proof by induction on the complexity of the graph

Sase case:
$$f = 1$$
acyclic connected graph – Tree
 $e = v - 1$
 $v - e + f = v - (v - 1) + 1 = 2$

v-e+f=2-

Proof by induction on the complexity of the graph

Induction step: Consider a graph with f' faces, v'vertices and e' edges.
Assume that the property holds for f = f' - 1

Assume that the property holds for f = f' - 1

v - e + f = 2 -

- a. Choose an edge that is shared by 2 different faces and remove it, the graph remains connected.
- b. This removal decreases both the number of faces and edges by one, on the new graph we get:

$$v - e + f = 2$$

 $v - e + f = v' - (e' - 1) + (f' - 1) = 2$
 $\Rightarrow v' - e' + f' = 2$

• What is the area of this polygon?

Let us begin with a simpler case, what is the area of a triangle containing no inner points:

• Lemma: the area of a triangle containing no inner points is $\frac{1}{2}$.

○ A basis of \mathbb{Z}^2 is a pair of vectors e_1, e_2 such that $\mathbb{Z}^2 = \{\lambda_1 e_1 + \lambda_2 e_2 \mid \lambda_1, \lambda_2 \in \mathbb{Z}\}$

○ Lemma: If { $(x_1, y_1), (x_2, y_2)$ } is a basis of \mathbb{Z}^2 then det(A) = ±1 where A = $\begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$

O Proof:

There exists a matrix Q s.t. AQ = I $\Rightarrow \det(A) \cdot \det(Q) = 1$ All the numbers are integers, hence the result.

○ <u>Lemma</u>: If the triangle created by a pair of vectors contains no lattice points, this pair is a basis of \mathbb{Z}^2 .

• Corollary: The area of a lattice triangle containing no inner points is $\frac{1}{2}$.

O Pick's theorem: The area of a polygon Q, with integral vertices is given by

$$A(Q) = n_{int} + \frac{1}{2}n_{bd} - 1$$

Where:

- n_{*int*} is the number of interior points
- \circ n_{bd} is the number of boundary points.

- \circ Number of triangles: f 1
- Number of boundary edges: *e*_{bd}

 $A(Q) = \frac{1}{2}(f-1)$

 \circ Number of interior edges: e_{int}

$$3(f - 1) = 2e_{int} + e_{bd}$$

$$\Rightarrow f = 2(e - f) - e_{bd} + 3$$

$$= 2(n - 2) - n_{bd} + 3$$
Euler's
Formula
$$= 2n_{int} + n_{bd} - 1$$

$$n = n_{int} + n_{bd}$$
1

$$v-e+f=2$$

Applications of Euler's Formula

O Exercises:

Show that for any planar graph:

- \circ Have at most 3V 6 edges.
- Have a vertex of degree at most 5.

DCEL – Doubly Connected Edge List

O Given a planar graph we are looking for a DS to represent the graph.

We want to enable (for example):
 Traverse all edges incident to a vertex v
 Traverse all edges bounding a face
 Traverse all faces adjacent to a given face
 etc...

DCEL – Doubly Connected Edge List

- \bigcirc **Complexity** of a subdivision = $V + E + F^{\diamond}$
- DCEL A data structure for representing an embedding of a planar graph in the plane
 Only consider: every edge is a straight line segment
 Recall Fáry's Theorem
- DCEL consists of 3 collections of records: Vertices, Edges, Faces

DCEL – A Record for Vertex

○ Vertex – the embedding of a node of the graph

- Coordinates(v) coordinates of vertices
- IncidentEdge(v)
 Points to only one edge

	Vertex	Coordinates	IncidentEdge		
	v_1	(0,4)	$\vec{e}_{1,1}$		
	v_2	(2,4)	$\vec{e}_{4,2}$		
	<i>v</i> ₃	(2,2)	$\vec{e}_{2,1}$		
	v_4	(1, 1)	$\vec{e}_{2,2}$		
1			_,_		

DCEL – A Record for Edge

Half-edges – different sides of an edge

- Bounds only 1 face
- Origin(e)
 - Orientation the face it bounds lies to its left
 - ID of a vertex structure
- Twin(e) the twin edge of e in the opposite direction
- OIncidentFace(e)
- Next(e) & Prev(e)

next and previous edge on the boundary of *IncidentFace(e)*.

DCEL – A Record for Edge

(

Half-edge	Origin	Twin	IncidentFace	Next	Prev
$\vec{e}_{1,1}$	v_1	$\vec{e}_{1,2}$	f_1	$\vec{e}_{4,2}$	$\vec{e}_{3,1}$
$\vec{e}_{1,2}$	v_2	$\vec{e}_{1,1}$	f_2	$\vec{e}_{3,2}$	$\vec{e}_{4,1}$
$\vec{e}_{2,1}$	<i>v</i> ₃	$\vec{e}_{2,2}$	f_1	$\vec{e}_{2,2}$	$\vec{e}_{4,2}$
$\vec{e}_{2,2}$	v_4	$\vec{e}_{2,1}$	f_1	$\vec{e}_{3,1}$	$\vec{e}_{2,1}$
$\vec{e}_{3,1}$	<i>V</i> 3	$\vec{e}_{3,2}$	f_1	$\vec{e}_{1,1}$	$\vec{e}_{2,2}$
$\vec{e}_{3,2}$	v_1	$\vec{e}_{3,1}$	f_2	$\vec{e}_{4,1}$	$\vec{e}_{1,2}$
$\vec{e}_{4,1}$	<i>v</i> ₃	$\vec{e}_{4,2}$	f_2	$\vec{e}_{1,2}$	$\vec{e}_{3,2}$
$\vec{e}_{4,2}$	v_2	$\vec{e}_{4,1}$	f_1	$\vec{e}_{2,1}$	$\vec{e}_{1,1}$

~/ N /T

TAXY I

DCEL – A Record for Face

OuterComponent(f) –
A pointer to a half-edge on the outer boundary of face f.

InnerComponents(f) –
A list contains for each hole in the face f a pointer to some half-edge on the boundary of the hole.

VI

OuterComponent	InnerComponents
nil	$\vec{e}_{1,1}$
$\vec{e}_{4,1}$	nil
	OuterComponent nil $\vec{e}_{4,1}$

DCEL – Further Facts

Amout of Storage – linear in the complexity of the subdivision

 \circ vertices and edges – linear in V + E

ofaces

OuterComponent – linear in *F* InnerComponent lists– linear in *E*

OSpecial cases

For Isolated vertices in a face, store pointers
 For additional information, add attributes

DCEL – Exercises

Why isn't the Destination field of the |
 Edge structure needed?
 Origin(Twin(e))

O Traverse all edges incident to a vertex v

- e₁ = IncidentEdge(v)
 do:
- e₁ = Next(Twin(e₁))
 While e₁ != IncidentEdge(v) f₁

