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Planar Graph

Definition - A planar graph is a graph that
can be embedded in the plane

Can be drawn on a plane in such a way that its edges
intersect only at their endpoints
In some pictures, a planar graph may have crossing

edges
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Simple graph:
e undirected

. hl
Planar Graph . o parallel edges

Fary's Theorem - every simple planar
graph admits an embedding in the plane such
that all edges are straight line segments
which don't intersect.

(0,1) (1,1)

Tutte Embedding - the
embedding of 3-vertex-connected
planar graphs with good
properties.
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Euler’s Formula

Notations
v —number of vertices
e —number of edges
f —number of faces

disconnected

Euler’s Formula (for finite, subdivision
connected planar graph)

v—e+f =2
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7 _ Proof by induction on the

v—e+ 1= complexity of the graph
Base case: f =1
acyclic connected graph - Tree
e = v-1
v-e+f=v-(v-1)+1=2



- Proof by induction on the
v—e+ =2 - complexity of the graph
Induction step: Consider a graph with f” faces, v’

vertices and e’ edges.
Assume that the property holds for f = f' — 1

Choose an edge that is shared by 2 different faces
and remove it, the graph remains connected.
This removal decreases both the number of faces
and edges by one, on the new graph we get:
v—e+f =2
v—e+f=v-(-1D+(f —-1)=2
>v —e' +f =2



Applications of Euler’s Formula - Pick’s Theorem

What is the area of this polygon?




Applications of Euler’s Formula - Pick’s Theorem

Let us begin with a simpler case, what is the area of
a triangle containing no inner points:

Lemma: the area of a triangle containing no inner
U |
points is -



Applications of Euler’s Formula - Pick’s Theorem

A basis of Z? is a pair of vectors ey, e, such that
ZZ — {1181 + /1232 | /11,/12 (S Z}

Lemma: If {(x1, ¥1), (x5, y,)} is a basis of Z* then
X{ X
det(4) = +1 where A = ( )

Y1 Y2
Proof:
There exists a matrix Q s.t. AQ =1
= det(4) - det(Q) =1
All the numbers are integers, hence the result.




Applications of Euler’s Formula - Pick’s Theorem

Lemma: If the triangle created by a pair of vectors
contains no lattice points, this pair is a basis of Z2.

Corollary: The area of a lattice triangle containing no
. 1
Inner points 1s >



Applications of Euler’s Formula - Pick’s Theorem

Pick’s theorem: The area of a polygon Q, with integral
vertices is given by

1
A(Q) = nype + 5Mbd — 1

Where:
n;,; is the number of interior points
nyq 1S the number of boundary points.

[ ) nint — 7
Npg = O
A =85




Applications of Euler’s Formula - Pick’s Theorem

Number of triangles: f — 1
Number of boundary edges: e 4
Number of interior edges: e¢;,,;

3(f = 1) = 2eipt + €pa
$f=2(€—f)—€bd+3
=2(Tl—2)—7’lbd+3

Euler’s
Formula

= an‘nt + Npa — 1

N = MNjpe + Npg

1
A(Q) = E(f_ 1)

v—e+ f=2



Applications of Euler’s Formula

Exercises:

Show that for any planar graph:
Have at most 3V — 6 edges.
Have a vertex of degree at most 5.



DCEL - Doubly Connected Edge List

Given a planar graph we are looking for a DS to
represent the graph.

We want to enable (for example):
Traverse all edges incident to a vertex v
Traverse all edges bounding a face

Traverse all faces adjacent to a given face
etc...

disconnected
subdivision



DCEL - Doubly Connected Edge List

Complexity of a subdivision=V + E + F
DCEL - A data structure for representing an

embedding of a planar graph in the plane
Only consider: every edge is a straight line segment
Recall Fary's Theorem

DCEL consists of 3 collections of records:
Vertices, Edges, Faces



DCEL - A Record for Vertex

Vertex - the embedding of a node of the graph

Coordinates(v) - coordinates of vertices

IncidentEdge(v)

Points to only one edge

Vertex Coordinates IncidentEdge

V1 (0 4)

V) (2,4)
V3 (2 )
(1,1)
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DCEL - A Record for Edge

Half-edges - different sides of an edge
Bounds only 1 face

Origin(e)
Orientation - the face it bounds lies to its left
ID of a vertex structure

Twin(e) - the twin edge of e in the opposite

Origin(é)
direction :

Twin(é) \
IncidentFace(e) X
Next(e) & Prev(e) _ [[Nex®

next and previous edge on the
boundary of /ncidentFace(e).

IncidentFace(é)



DCEL -
A Record for
Edge

IncidentFace(?)
Vi @
Half-edge Origin Twin IncidentFace Next Prev
el Vi €1, /1 €s2 €3
€12 V) e1.] /2 €32  €4]
2.1 V3 €2 /1 €22 €2
€22 V4 € 1 y €31 €21
€3] V3 €32 5 e1.1 €22
€32 Vi 3,1 ) €41 €12
€4, V3 €4.2 /2 €15 €33
€4 V2 €4, fi e e




DCEL - A Record for Face

OuterComponent(f) -
A pointer to a half-edge on the
outer boundary of face f.

V1 ()]1 .
[ > ikl

InnerComponents(f) -
A list contains for each hole in
the face f a pointer to some half-
edge on the boundary of the hole.

S

Face OuterComponent InnerComponents

f] nil e 1,1
f ey nil




DCEL - Further Facts

Amout of Storage - linear in the complexity of

the subdivision
vertices and edges - linearinV + E
faces
OuterComponent - linear in F
InnerComponent lists- linear in E

Special cases

For Isolated vertices in a face, store pointers
For additional information, add attributes



DCEL - Exercises

Why isn't the Destination field of the |

Edge structure needed?
Origin(Twin(e))

Traverse all edges incident to a vertex v

‘vl (’1,1 \:2

e, = IncidentEdge (V)
do:
e, = Next(Twin(e,)) AN
While e; != IncidentEdge (V) 5




